From Genes to Protein

Metabolism Teaches Us About Genes
- **Metabolic defects**
 - studying metabolic diseases suggested that genes specified proteins
 - alkaptonuria (black urine from alkapton a.k.a. homogentisic acid)
 - PKU (phenylketonuria)
 - each disease is caused by non-functional enzyme

Genotypes create phenotype

1 Gene – 1 Enzyme Hypothesis
- **Beadle & Tatum**
 - Compared mutants of bread mold, *Neurospora* fungus
 - created mutations by X-ray treatments
 - X-rays “break” DNA
 - inactivate a gene
 - wild type grows on “minimal” media
 - sugars + required precursor nutrient to synthesize essential amino acids
 - mutants require added amino acids
 - each type of mutant lacks a certain enzyme needed to produce a certain amino acid
 - non-functional enzyme = broken gene

Beadle & Tatum’s Neurospora Experiment

Beadle & Tatum

George Beadle

Edward Tatum
So... What is a Gene?

- One gene = one enzyme
 - all genes code for enzymes
 - but there are proteins that are not enzymes coded
- One gene = one protein
 - each gene codes for a chain of amino acids
 - but many proteins are composed of several polypeptides (many chains of amino acids)
- One gene = one polypeptide
 - but many genes have the code for only RNA
- One gene = one product
 - but many genes can code for more than one product …

Defining a Gene...

“Defining a gene is problematic because... one gene can code for several protein products, some genes code only for RNA, two genes can overlap, and there are many other complications.”

The “Central Dogma”

- How do we move information from DNA to proteins?

DNA \rightarrow RNA \rightarrow protein

From nucleus to cytoplasm...

- Where are the genes?
 - genes are on chromosomes in nucleus
- Where are proteins synthesized?
 - proteins made in cytoplasm by ribosomes
- How does the information get from nucleus to cytoplasm?
 - messenger RNA

RNA

- ribose sugar
- N-bases
 - uracil instead of thymine
 - U : A
 - C : G
- single stranded
- mRNA, rRNA, tRNA, siRNA....

Transcription

- Transcribed DNA strand = template strand
- untranscribed DNA strand = coding strand
- Synthesis of complementary RNA strand
- transcription bubble
- Enzyme that facilitates the building of RNA:
 - RNA polymerase
Transcription in Prokaryotes

- **Initiation**
 - RNA polymerase binds to **promoter sequence** on DNA

- **Role of promoter**
 1. Where to start reading = starting point
 2. Which strand to read = template strand
 3. Direction on DNA = always reads DNA 3’→5’

- **Elongation**
 - RNA polymerase unwinds DNA ~20 base pairs at a time
 - reads DNA 3’→5’
 - builds RNA 5’→3’ (the energy governs the synthesis!)

- **Termination**
 - RNA polymerase stops at **termination sequence**
 - mRNA leaves nucleus through pores

No proofreading
- 1 error/10^6 bases
- many copies
- short life
- not worth it!

Transcription in Eukaryotes

- **3 RNA eukaryotic polymerase enzymes**
 - RNA polymerase I
 - only transcribes rRNA genes
 - **RNA polymerase II**
 - transcribes genes into mRNA
 - RNA polymerase III
 - only transcribes tRNA genes
 - each has a specific promoter sequence it recognizes
Transcription in Eukaryotes

- Initiation complex
 - transcription factors bind to **promoter region** upstream of gene
 - proteins which bind to DNA & turn on or off transcription
 - **TATA** box binding site
 - only then does RNA polymerase bind to DNA

Eukaryotic Post-transcriptional Processing

- **Primary transcript**
 - eukaryotic mRNA needs work after transcription

- **Protect mRNA**
 - from RNA-ase enzymes in cytoplasm
 - add 5’ G cap
 - add polyA tail

- **Edit out introns**

Prokaryote vs. Eukaryote Genetics

- **Prokaryotes**
 - DNA in cytoplasm
 - circular chromosome
 - naked DNA
 - no introns

- **Eukaryotes**
 - DNA in nucleus
 - linear chromosomes
 - DNA wound on histone proteins
 - introns vs. exons

From Gene to Protein

- **DNA**
 - **mRNA**
 - mRNA leaves nucleus through nuclear pores
 - proteins synthesized by ribosomes using instructions on mRNA

Prokaryote vs. Eukaryote Genetics

- Differences between prokaryotes & eukaryotes
 - time & physical separation between processes
 - RNA processing
Translation in Prokaryotes

- Transcription & translation are simultaneous in bacteria
 - DNA is in cytoplasm
 - no mRNA editing needed

How Does DNA Code for Proteins

- DNA: TACGCACATTACGTACGC GG
- mRNA: AUGCGUGUAAAUGCAUGCGCC
- Protein: Met Arg Val Asn Ala Cys Ala

How can you code for 20 amino acids with only 4 nucleotide bases (A,U,G,C)?

Cracking the Code

- Nirenberg & Matthaei
 - determined 1st codon–amino acid match
 - UUU coded for phenylalanine
 - created artificial poly(U) mRNA
 - added mRNA to test tube of ribosomes, tRNA & amino acids
 - mRNA synthesized single amino acid polypeptide chain

Translation

- Codons
 - blocks of 3 nucleotides decoded into the sequence of amino acids

mRNA Codes for Proteins in Triplets

- DNA: TACGCACATTACGTACGC GG
- mRNA: AUGCGUGUAAAUGCAUGCGCC
- Protein: Met Arg Val Asn Ala Cys Ala

mRNA codes for proteins in triplets... CODONS!
The Code!
- For ALL life!
 - strongest support for a common origin for all life
- Code is redundant
 - several codons for each amino acid
- Start codon
 - AUG
 - methionine
- Stop codons
 - UGA, UAA, UAG

How are Codons Matched to Amino Acids?
- DNA
 - TACGCACTTTACGTACGCGG
- mRNA
 - AUGCUUGUAAGUCAUGGCC
- tRNA
 - Met
 - Arg
 - Val

Amino acid attachment end

anti-codon

Amino acid

nucleus

cytoplasm

Loading tRNA
- Aminoacyl tRNA synthetase
 - enzyme which bonds amino acid to tRNA
 - endergonic reaction
 - ATP \rightarrow AMP
 - energy stored in tRNA-amino acid bond
 - unstable
 - so it can release amino acid at ribosome

Ribosomes
- Facilitate coupling of tRNA anticodon to mRNA codon
 - organelle or enzyme?
- Structure
 - ribosomal RNA (rRNA) & proteins
 - 2 subunits
 - large
 - small
Ribosomes

- **A site (aminoacyl-tRNA site)**
 - Holds tRNA carrying next amino acid to be added to chain
- **P site (peptidyl-tRNA site)**
 - Holds tRNA carrying growing polypeptide chain
- **E site (exit site)**
 - Empty tRNA leaves ribosome from exit site

Building a Polypeptide

- **Initiation**
 - Brings together mRNA, ribosome subunits, proteins & initiator tRNA
- **Elongation**
- **Termination**

Elongation: Growing a Polypeptide

1. Codon recognition
2. Peptide bond formation
3. Translocation

Termination: Release Polypeptide

- **Release factor**
 - "release protein" bonds to A site
 - Releases ribosome subunits, mRNA, and polypeptide

Can you tell the eukaryotic story?

- DNA
- RNA polymerase
- Pre-mRNA
- Mature mRNA
- 5' cap
- PolyA tail
- Large subunit
- Ribosome
- Small subunit
- Polypeptide
- 'Charged' tRNA

Putting it all together...

- The linear sequence of the gene is transcribed into RNA, which is then processed in the nucleus.
- The mature mRNA is transported to the cytoplasm, where it binds to the ribosome.
- The ribosome translates the mRNA into a polypeptide chain, following the genetic code.
- The polypeptide chain is then folded into its functional 3D structure, a process that involves the coordination of various enzymes and chaperones.
Mutations

- Code is redundant
 - several codons for each amino acid
 - "wobble" in the tRNA
 - "wobble" in the aminoacyl-tRNA synthetase enzyme that loads the tRNA

Universal Code

- Code is redundant
 - several codons for each amino acid
 - "wobble" in the tRNA
 - "wobble" in the aminoacyl-tRNA synthetase enzyme that loads the tRNA

Mutations

- Point mutations
 - single base change
 - base-pair substitution
 - silent mutation
 - no amino acid change
 - redundancy in code
 - missense
 - change amino acid
 - nonsense
 - change to stop codon

When do mutations affect the next generation?

A Mutation Leads to Sickle Cell Anemia

- What kind of mutation?

Wild-type hemoglobin DNA

Mutant hemoglobin DNA

Sickle Cell Anemia

- Normal red blood cells and the primary structure of normal hemoglobin
- Sickle red blood cells and the primary structure of sickle-cell hemoglobin
Mutations
- Frameshift
 - shift in the reading frame
 - changes everything “downstream”
- Insertions
 - adding base(s)
- Deletions
 - losing base(s)

Any Questions?