Community Ecology

- **Community**
 - all the organisms that live together in a place = interactions

- **Community Ecology**
 - study of interactions among all populations in a common environment

Ecosystem Inputs

- energy flows through

Ecological Communities

- **Energy Transfer**
 - **Energy in**
 - from the Sun
 - captured by **autotrophs** = **producers** (plants)

 - **Energy through**
 - food chain
 - transfer of energy from autotrophs to heterotrophs (herbivores to carnivores)
 - heterotrophs = **consumers**
 - herbivores
 - carnivores

Food Chains

- **Trophic levels**
 - feeding relationships
 - start with **energy from the sun**
 - captured by **plants**
 - 1st level of all food chains
 - food chains usually go up only 4 or 5 levels
 - inefficiency of energy transfer
 - all levels connect to **decomposers** (detritivores)

Inefficiency of Energy Transfer

- **Loss of energy between levels of food chain**
 - To where is the energy lost? The cost of living!

 - ~17% growth
 - only this energy can move on to the next level in the food chain
 - ~33% cellular respiration
 - ~50% waste (feces)
 - energy lost to daily living
Ecological Pyramid
- Loss of energy between levels of food chain
 - can support fewer organisms at each level
 - 10^10 J
 - 10^7 J
 - 10^4 J
 - 10^2 J
 - 10^0 J

Humans in Food Chains
- Dynamics of energy through ecosystems have important implications for human populations
 - how much energy does it take to feed a human?
 - if we are meat eaters?
 - if we are vegetarian?

Food Webs
- Food chains are linked together into food webs
- Who eats whom?
 - a species may weave into web at more than one level
 - bears
 - humans
 - eating meat?
 - eating plants?

BioMagnification
- Energy pyramid
 - toxins concentrate as they move up the food chain
 - DDT concentration: increase of 10 million times

BioMagnification
- PCBs
 - General Electric manufacturing plant on Hudson River
 - PCBs in sediment
 - striped bass nesting areas

Niche
- An organism’s niche is its ecological role
 - habitat = address vs. niche = job
 - Competitive Exclusion
 - If Species 2 is removed, then Species 1 will occupy whole tidal zone. But at lower depths Species 2 out-competes Species 1, excluding it from its potential (fundamental) niche.
Niche & Competition

- **Competitive Exclusion**
 - No two similar species can occupy the same niche at the same time

Interspecific Interactions

- **Symbiotic interactions**
 - *competition* (-/-)
 - compete for limited resource
 - competitive exclusion!
 - *predation / parasitism* (-/+)
 - *mutualism* (+/+)
 - lichens (algae & fungus)
 - *commensalism* (+/0)
 - barnacles attached to whale

Predation Drives Evolution

- **Predators adaptations**
 - locate & subdue prey
- **Prey adaptations**
 - elude & defend
 - horns, speed, coloration
 - spines, thorns, toxins
 - Predation provides a strong selection pressure on both prey & predator.

Resource Partitioning

- Reduce competition through microhabitats
 - "the ghost of competition past"
 - sympatric speciation!

Symbiosis

- **mutualism** +/+
 - lichens (algae & fungus)
- **commensalism** +/0
 - barnacles attached to whale
- **predation** +/-
- **competition** -/-

Defense Mechanisms

- **Camouflage**
 - *cryptic coloration*

Predation provides a strong selection pressure on both prey & predator.
Warning “Aposematic” Coloration
- Bright warning to predators

Batesian Mimicry
- Convergent evolution
 - Palatable or harmless species mimics a harmful model

Hawkmoth larva puffs up to look like poisonous snake

Convergent evolution
- Predators-prey relationships
- Parasite-host relationships
- Flowers & pollinators

Characterizing a Community
- Community structure
 - Species diversity
 - How many different species
 - Composition
 - Dominant species
 - Most abundant species or highest biomass (total weight)
 - Keystone species
 - Key role
 - Strong effect on composition of the community

Keystone Species
- Influential ecological role
 - Exert important regulating effect on other species in community
 - Keystone species increases diversity of habitat

Pisaster ochraceous
- Sea star
- Diversity increases
 - With Pisaster (control)
 - Without Pisaster (experimental)

Washington coast
Keystone Species
- Sea otter is a keystone predator in North Pacific
 - Focal chain before killer whale introduced in 1980
 - Focal chain after killer whale started preying on others

Keystone Species
- Beaver is a keystone species in Northeast and West
 - Dams transform flowing streams into ponds creating new habitat

Ecological Succession
- Sequence of community changes
 - Transition in species composition over time
 - Years or decades
 - Usually after a disturbance
- Mt. St. Helens

What causes succession?
- Tolerance
 - Early species are weedy r-selected
 - Tolerant of harsh conditions
- Facilitation & Inhibition
 - Early species facilitate habitat changes
 - Change soil pH
 - Change soil fertility
 - Change light levels
 - Allows other species to out-compete

Primary Succession
- Begins with virtually lifeless area without soil, then...
 - Bacteria
 - Lichens & mosses
 - Grasses
 - Shrubs
 - Trees

Secondary Succession
- Existing community cleared, but base soil is still intact
 - Burning releases nutrients formerly locked up in the tissues of tree
 - Disturbance starts the process of succession over again
Succession of Species

- Pioneer species
 - lichens & mosses
 - grasses
- More shade tolerant species
 - bushes & small trees
- Shade tolerant species
- Climax forest

- Compete well in high sunlight
- More shade tolerant species

Climax Forest

- Plant community dominated by trees
- Representing final stage of natural succession for specific location
 - Stable plant community
 - Remains essentially unchanged in species composition as long as site remains undisturbed
 - Birch, beech, maple, hemlock
 - Oak, hickory, pine

Disturbances

- Most communities are in a state of non-equilibrium due to disturbances
 - Fire, weather, human activities, etc.
 - Not all are negative

Disturbances as Natural Cycle

- Disturbances are often necessary for community development & survival
 - Release nutrients
 - Increases biodiversity
 - Increases habitats
 - Rejuvenates community

When people don’t learn ecology!

Building homes in fire climax zones

Deforestation

- Loss of habitat
- Loss of biodiversity
- Loss of stability
Effects of Deforestation

- 40% increase in runoff
- Loss of water
- Loss of nitrogen: 60x
- Loss of calcium: 10x

<table>
<thead>
<tr>
<th>Year</th>
<th>Nitrate Levels (mg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>0</td>
</tr>
<tr>
<td>1966</td>
<td>20</td>
</tr>
<tr>
<td>1967</td>
<td>40</td>
</tr>
<tr>
<td>1968</td>
<td>80</td>
</tr>
</tbody>
</table>

Fragmented Habitat

- Loss of habitat
- Loss of food resource for higher levels on food chain
- Loss of biodiversity
- Loss of stability

Species Diversity

- Greater diversity = greater stability

- Greater biodiversity offers:
 - More food resources
 - More habitats
 - More resilience in face of environmental change

Simpson’s Diversity Index

- Quantifiable measure of biodiversity

\[
\text{Diversity Index} = 1 - \sum \left(\frac{n}{N} \right)^2
\]

- \(n\) = total number of organisms of a particular species
- \(N\) = total number of organisms of all species

The Impact of Reduced Biodiversity

- Compare these communities

- Agricultural “monoculture”
- “Old field”
 - Irish potato famine
 - 1970 US corn crop failure

Loss of Diversity

- 3 levels of biodiversity
 - Genetic diversity: inbreeding with shrinking populations
 - Community diversity: mix of species
 - Ecosystem diversity: different habitats across landscape

- All decreased by human activity