Chapter 13
DNA
The Genetic Material
Replication

Genes are on chromosomes
- T.H. Morgan
 - working with Drosophila (fruit flies)
 - genes are on chromosomes
 - but is it the protein or the DNA of the chromosomes that are the genes?
 - through 1940 proteins were thought to be genetic material... Why?

The “Transforming Factor”
- Frederick Griffith
 - Streptococcus pneumoniae bacteria
 - was working to find cure for pneumonia
 - harmless live bacteria mixed with heat-killed infectious bacteria causes disease in mice
 - substance passed from dead bacteria to live bacteria = “Transforming Factor”

DNA is the “Transforming Factor”
- Avery, McCarty & MacLeod
 - purified DNA, RNA, & proteins from pathogenic Streptococcus pneumoniae bacteria and added them* to a new bacterial culture to see which can transform non-pathogenic bacteria...
 - *digested purified protein
 - bacteria still transformed
 - *digested purified RNA
 - bacteria still transformed
 - *digested purified DNA
 - bacteria DID NOT transform!

The “Transforming Factor”
- 1928

Confirmation of DNA
- 1952 | 1969

Hershey & Chase
- classic “blender” experiment
- worked with bacteriophage
 - viruses that infect bacteria
- grew phage viruses in 2 media, radioactively labeled with either
 - 35S in their proteins
 - 32P in their DNA
- infected bacteria with labeled phages

The "Transforming Factor"
- 1928

Transformation?
something in heat-killed bacteria could still transmit disease-causing properties
CCHS AP Biology

Goldberg

Hershey & Chase

Protein coat labeled with 35S
DNA labeled with 32P

T2 bacteriophages are labeled with radioactive isotopes S vs. P

bacteriophages infect bacterial cells

bacterial cells are agitated to remove viral protein coats and then centrifuged “spun down”

35S radioactivity found in the liquid medium

32P radioactivity found in the bacterial cells

Hershey & Chase

Martha Chase
Alfred Hershey

“Blender” Experiment

- Radioactive phage & bacteria in blender
 - 35S phage
 - radioactive proteins stayed in supernatant
 - therefore protein did NOT enter bacteria
 - 32P phage
 - radioactive DNA stayed in pellet
 - therefore DNA did enter bacteria
 - **Confirmed DNA is “transforming factor”**

Chargaff

- DNA composition: “Chargaff’s rules”
 - varies from species to species
 - all 4 bases not in equal quantity
 - bases present in characteristic ratio

- DNA composition table:

<table>
<thead>
<tr>
<th>Organism</th>
<th>A %</th>
<th>T %</th>
<th>G %</th>
<th>C %</th>
<th>A/T</th>
<th>G/C</th>
<th>A+T</th>
<th>G+C</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>31.3</td>
<td>18.7</td>
<td>31.7</td>
<td>18.3</td>
<td>1.81</td>
<td>1.64</td>
<td>3.45</td>
<td>3.45</td>
</tr>
<tr>
<td>Mouse</td>
<td>26.8</td>
<td>23.3</td>
<td>27.2</td>
<td>13.7</td>
<td>1.13</td>
<td>1.14</td>
<td>2.27</td>
<td>2.27</td>
</tr>
<tr>
<td>Yeast</td>
<td>31.4</td>
<td>27.4</td>
<td>28.4</td>
<td>12.8</td>
<td>1.14</td>
<td>1.16</td>
<td>2.30</td>
<td>2.30</td>
</tr>
<tr>
<td>Chicken</td>
<td>28.0</td>
<td>21.0</td>
<td>28.4</td>
<td>13.6</td>
<td>1.28</td>
<td>1.27</td>
<td>2.55</td>
<td>2.55</td>
</tr>
<tr>
<td>Ostrich</td>
<td>29.3</td>
<td>20.5</td>
<td>20.7</td>
<td>19.1</td>
<td>1.47</td>
<td>1.47</td>
<td>3.06</td>
<td>3.06</td>
</tr>
<tr>
<td>Grasshopper</td>
<td>30.8</td>
<td>17.7</td>
<td>17.3</td>
<td>32.2</td>
<td>1.77</td>
<td>1.77</td>
<td>3.54</td>
<td>3.54</td>
</tr>
<tr>
<td>Sea Urchin</td>
<td>29.8</td>
<td>17.7</td>
<td>17.3</td>
<td>32.2</td>
<td>1.77</td>
<td>1.77</td>
<td>3.54</td>
<td>3.54</td>
</tr>
</tbody>
</table>

Structure of DNA

- Watson & Crick
 - developed double helix model of DNA
 - other scientists working on question:
 - Rosalind Franklin
 - Maurice Wilkins
 - Linus Pauling

- 1953 | 1962

Watson and Crick

Watson and Crick

Erwin Chargaff

Rosalind Franklin (1920-1958)

Double Helix Structure of DNA

- The structure of DNA suggested a mechanism for how DNA is copied by the cell.

Directionality of DNA
- You need to number the carbons!
 - it matters!

\[
\begin{align*}
\text{ribose} & : \text{OH} \quad \text{CH}_2 \quad \text{OH} \\
\text{deoxyribose} & : \text{OH} \quad \text{CH}_2 \quad \text{OH}
\end{align*}
\]

The DNA Backbone
- Putting the DNA backbone together
 - refer to the 3’ and 5’ ends of the DNA
 - the last trailing carbon

Base Pairing in DNA
- Purines
 - adenine (A)
 - guanine (G)
- Pyrimidines
 - thymine (T)
 - cytosine (C)
- Pairing
 - A : T
 - C : G
Anti-parallel Strands
- Phosphate to sugar covalent bond involves carbons in 3’ & 5’ positions
 - DNA molecule has “direction”
 - complementary strand runs in opposite direction

“It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material.”
Watson & Crick

Models of DNA Replication
- Alternative models
 - so how is DNA copied?

DNA Replication
- Large team of enzymes coordinates replication

Bonding in DNA
- Hydrogen bonds
- Covalent phosphodiester bonds

Copying DNA
- Replication of DNA
 - base pairing allows each strand to serve as a pattern for a new strand

Replication: 1st step
- Unwind and open up DNA
 - Helicase enzyme
 - unwinds part of DNA helix at ori
 - forms replication forks
 - stabilized by single-stranded binding proteins
Replication: 1st step
- Unwind and open up DNA
 - topoisomerase enzyme
 - relieves stress of coiling at front of replication fork due to helicase

Replication: 2nd step
- Bring in new nucleotides to match up to template strands

Energy of Replication
- Where does the energy for the bonding come from?

Energy of Replication
- The nucleotides arrive as nucleosides
 - DNA bases with P–P–P
 - DNA bases arrive with their own energy source for bonding
 - bonded by DNA polymerase III

Replication
- Adding bases
 - can only add nucleotides to 3’ end of a growing DNA strand
 - strand grows 5’→3’
 - carried out by DNA polymerase III

Priming DNA Synthesis
- DNA polymerase III can only extend an existing DNA molecule
 - cannot start new one
 - cannot place first base
 - short RNA primer is built first by primase
 - starter sequences
 - DNA polymerase III can now add nucleotides to RNA primer
 - Priming DNA Synthesis
 - DNA template
 - DNA polymerase III
 - RNA primer
 - New DNA
Cleaning Up Primers

DNA polymerase I removes sections of RNA primer and replaces with DNA nucleotides

Leading & Lagging Strands

Leading strand - continuous synthesis

Ligase - "spot welder" enzyme

Replication Enzymes

- helicase
- single-stranded binding proteins
- topoisomerase
- DNA polymerase III
- primase
- DNA polymerase I
- ligase

Replication Bubble

Adds 1000 bases/second!

- Which direction does DNA build?
- List the enzymes & their role

DNA Polymerase Review

- DNA polymerase III
 - 1000 bases/second
 - main DNA building enzyme
- DNA polymerase I
 - 20 bases/second
 - editing, repair & primer removal
Editing & Proofreading DNA
- 1000 bases/second = lots of typos!
- DNA polymerase I
 - proofreads & corrects typos
 - repairs mismatched bases
 - excises abnormal bases
 - repairs damage throughout life
 - reduces error rate from ~1 in 10,000 to ~1 in 100 million bases

Fast & Accurate!
- It takes \textit{E. coli} <1 hour to copy 5 million base pairs in its single chromosome
 - divide to form 2 identical daughter cells
- Human cell copies its 6 billion bases & divide into daughter cells in only few hours
 - remarkably accurate
 - only ~1 error per 100 million bases
 - ~30 errors per cell cycle

And in the end...
- Ends of chromosomes are eroded with each replication
 - an issue in aging?
 - ends of chromosomes are protected by telomeres

Telomeres
- Expendable, non-coding sequences at ends of DNA
 - short sequence of bases repeated 1000s times
 - TTAGGG in humans
- Telomerase enzyme in certain cells
 - enzyme extends telomeres
 - prevalent in cancers
 - Why?

Telomeres
- Blackburn, Greider, & Szostak
 - for the discovery of how chromosomes are protected by telomeres and the enzyme telomerase

The “Central Dogma”
- flow of genetic information within a cell

1977 | 2009

![Telomerase enzyme](image)
Polymerase Chain Reaction (PCR)

- What if you want to study a specific segment (gene)?
- What if you have to copy DNA with not a lot to begin with?
 - PCR is a method for making many copies of a specific region of DNA
 - only need 1 molecule of DNA to start

Kary Mullis

- development of PCR technique
 - a copying machine for DNA

PCR Process

- It’s copying DNA in a test tube!
- What do you need?
 - template strand
 - DNA polymerase enzyme
 - nucleotides
 - primer

PCR Primers

- The primers are critical!
 - need to know a bit of sequence to make proper primers
 - primers bracket target sequence
 - start with long piece of DNA & copy a specified shorter segment
 - primers define section of DNA to be ‘cloned’

The Polymerase Problem

- Heat DNA to denature it
 - 90°C destroys DNA polymerase
 - have to add new enzyme every cycle
 - almost impractical!
- Need enzyme that can withstand 90°C...
 - Taq polymerase
 - from hot springs bacteria
 - Thermus aquaticus

PCR Process

- What do you need to do?
 - heat (~90°C) DNA to separate strands (denature)
 - cool (~60°C) to hybridize (anneal)
 - raise temp (~72°C) to build new DNA (extension)