Chapter 11.4 – 11.5
Meiosis

Cell Division / Asexual Reproduction
- Mitosis
 - produce cells with same information
 - identical daughter cells
 - exact copies
 - clones
 - same amount of DNA
 - same number of chromosomes
 - same genetic information

Asexual reproduction
- Single-celled eukaryotes reproduce asexually
 - yeast
 - Paramecium
 - Amoeba
- Simple multicellular eukaryotes reproduce asexually
 - exceptions... like Hydra
 - budding

Asexual reproduction
- budding in yeast
- mitosis in amoeba

Sexual Reproduction / Fertilization
- in sexual reproduction, a gamete from each parent fuses (called fertilization)
 - joining of egg + sperm
- Do we make egg & sperm by mitosis?
- How do we make sperm & eggs?
 - Must reduce 46 chromosomes → 23
 - must half the number of chromosomes
 - diploid (2n) to haploid (n) (meiosis)
Meiosis: Production of Gametes

- Alternating processes, alternating stages
 - Chromosome number must be reduced
 - Diploid → Haploid
 - $2n \rightarrow n$
 - **Meiosis** reduces chromosome number
 - Fertilization restores chromosome number
 - Haploid → Diploid
 - $n \rightarrow 2n$

Differences across Kingdoms

- Not all organisms use haploid & diploid stages in the same way
 - Which one is dominant ($2n$ or n) differs
 - But still alternate between haploid & diploid
 - Have to for sexual reproduction

Paired Chromosomes

- Both chromosomes of a pair carry "matching" genes
 - Control same inherited characters
 - Homologous = same information

Sexual Reproduction: Fertilization

- 1 copy - haploid - 1n
- 2 copies - diploid - 2n
Making Gametes for the Next Generation

- 2 copies - diploid - 2n
- 1 copy - haploid - 1n

Meiosis = Reduction Division

- Meiosis
 - special cell division in sexually reproducing organisms
 - reduce 2n → 1n
 - diploid → haploid
 - half
 - makes gametes
 - sperm, eggs

Meiosis evolved from mitosis, so stages & "machinery" are similar but the processes are radically different. Do not confuse the two!

Meiosis = Reduction Division

- Meiosis
 - special cell division in sexually reproducing organisms
 - reduce 2n → 1n
 - diploid → haploid
 - half
 - makes gametes
 - sperm, eggs

WARNING: Meiosis evolved from mitosis, so stages & "machinery" are similar but the processes are radically different. Do not confuse the two!

2 Divisions of Meiosis

DNA replication

1st division of meiosis separates homologous pairs

2nd division of meiosis separates sister chromatids

Preparing for meiosis

- 1st step of meiosis
 - Duplication of DNA
 - Why bother?
 - meiosis evolved after mitosis
 - convenient to use "machinery" of mitosis
 - DNA replicated in S phase of interphase of MEIOSIS (just like in mitosis)

Meiosis 1

- 1st division of meiosis separates homologous pairs

Meiosis 2

- 2nd division of meiosis separates sister chromatids
Steps of Meiosis

- **Meiosis 1**
 - interphase
 - prophase 1
 - metaphase 1
 - anaphase 1
 - telophase 1

- **Meiosis 2**
 - prophase 2
 - metaphase 2
 - anaphase 2
 - telophase 2

1st division of meiosis separates homologous pairs
(2n → 1n)

2nd division of meiosis separates sister chromatids
(1n → 1n)
JUST LIKE MITOSIS

Mitosis vs. Meiosis

- **Mitosis**
 - 1 division
 - daughter cells genetically identical to parent cell
 - produces 2 cells
 - 2n → 2n
 - produces cells for growth & repair
 - no crossing over

- **Meiosis**
 - 2 divisions
 - daughter cells genetically different from parent
 - produces 4 cells
 - 2n → 1n
 - produces gametes
 - crossing over

Crossing Over

- During prophase 1
 - homologous pairs swap pieces of chromosome
 - sister chromatids intertwine
 - called “crossing over”
Crossing Over
- Involves 3 steps
 - cross over
 - breakage of DNA
 - re-fusing of DNA
- New combinations of traits

Genetic Variation
- Meiosis & crossing over introduce great genetic variation to a population
 - drives evolution

Sources of Genetic Variability
- Genetic variability in sexual reproduction!
 - independent assortment
 - homologous chromosomes in Meiosis 1
 - crossing over
 - between homologous chromosomes in prophase 1
 - random fertilization
 - random ovum fertilized by a random sperm

The Value of Meiosis
- Meiosis introduces genetic variation
 - gametes of offspring do not have same chromosomes as gametes from parents
 - genetic recombination
 - random assortment in humans produces $2^{23} \times 2^{23}$ (8,388,608) different combinations for one gamete!
 - This does not even include new combos due to crossing over!

Random fertilization
- Any 2 human parents will produce a zygote with over 70 trillion ($2^{23} \times 2^{23}$) diploid combinations (of chromosomes!)
Nondisjunction
- Problems with meiotic spindle cause errors in daughter cells
 - tetrad chromosomes do not separate properly during Meiosis 1
 - sister chromatids fail to separate during Meiosis 2
 - too many or too few chromosomes

Alteration of Chromosome Number

Nondisjunction
- Zygote has wrong chromosome number
 - trisomy
 - cells have 3 copies of a chromosome
 - monosomy
 - cells have only 1 copy of a chromosome

Human Chromosome Disorders
- High frequency in humans
 - most embryos are spontaneously aborted
 - alterations are too disastrous
 - developmental problems result from biochemical imbalance
- Certain conditions are tolerated
 - upset the balance less = survive
 - characteristic set of symptoms = syndrome

Down Syndrome
- Trisomy 21
 - 3 copies of chromosome 21
 - 1 in 700 children born in U.S.
 - Chromosome 21 is the smallest human chromosome
 - but still severe effects if affected
 - Frequency of Down syndrome correlates with the age of the mother

Down Syndrome & Mother’s Age

<table>
<thead>
<tr>
<th>Mother’s age</th>
<th>Incidence of Down Syndrome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under 30</td>
<td><1 in 1000</td>
</tr>
<tr>
<td>30</td>
<td>1 in 900</td>
</tr>
<tr>
<td>35</td>
<td>1 in 400</td>
</tr>
<tr>
<td>36</td>
<td>1 in 300</td>
</tr>
<tr>
<td>37</td>
<td>1 in 230</td>
</tr>
<tr>
<td>38</td>
<td>1 in 180</td>
</tr>
<tr>
<td>39</td>
<td>1 in 135</td>
</tr>
<tr>
<td>40</td>
<td>1 in 105</td>
</tr>
<tr>
<td>42</td>
<td>1 in 60</td>
</tr>
<tr>
<td>44</td>
<td>1 in 35</td>
</tr>
<tr>
<td>46</td>
<td>1 in 20</td>
</tr>
<tr>
<td>48</td>
<td>1 in 16</td>
</tr>
<tr>
<td>49</td>
<td>1 in 12</td>
</tr>
</tbody>
</table>
Genetic Testing
- **Amniocentesis in 2nd trimester**
 - sample of embryo cells
 - stain & photograph chromosomes
- **Analysis of karyotype**

Rate of miscarriage due to amniocentesis:
- 1970s data: 0.5%, or 1 in 200 pregnancies
- 2006 data: <0.1%, or 1 in 1600 pregnancies

Human Sex Chromosomes
- **Human development more tolerant of wrong numbers in sex chromosome**
- **But produces a variety of distinct conditions in humans**
 - XXY = Klinefelter’s syndrome male
 - XXX = Trisomy X female
 - XYY = Jacob’s syndrome male
 - XO = Turner syndrome female

Klinefelter’s Syndrome
- **XXY male**
 - one in every 2000 live births
 - have male sex organs, but are sterile
 - slight “feminine” characteristics
 - tall
 - normal intelligence

Jacob’s Syndrome
- **XYY Males**
 - 1 in 1000 live male births
 - extra Y chromosome
 - somewhat taller than average
 - more active
 - slight learning disabilities
 - delayed emotional immaturity
 - normal intelligence, normal sexual development

Trisomy X
- **XXX**
 - 1 in every 2000 live births
 - produces healthy females
 - Why?

Turner Syndrome
- **Monosomy X or X0**
 - 1 in every 5000 births
 - varied degree of effects
 - normal intelligence
 - webbed neck
 - short stature
 - immature sterile females