

Prophase

- Chromatin (DNA) condenses
 - visible as chromosomes
 chromatids
 - fibers extend from the centromeres
- <u>Centrioles</u> move to opposite poles of cell
- Fibers (microtubules) cross cell to form mitotic spindle
 - actin, myosin
- Nucleolus disappears
- Nuclear membrane breaks down

Prometaphase

- Proteins attach to centromeres
 - creating kinetochores
- Microtubules attach at kinetochores
 - connect centromeres to centrioles
- Chromosomes begin moving

Kinetochores

- Each chromatid has own kinetochore proteins found at the centromere
 - microtubules attach to kinetochore proteins

Metaphase

- Spindle fibers align chromosomes along the middle of cell
 - meta = middle
 - metaphase plate
 - helps to ensure chromosomes separate properly
 - so each new nucleus receives only 1 copy of each chromosome

Anaphase

- Sister chromatids separate at kinetochores
 - move to opposite poles
 - pulled at centromeres
 - pulled by motor proteins "walking"along microtubules
 - increased production of ATP by mitochondria
- Poles move farther apart
 - polar microtubules lengthen

Chromosome Movement Kinetochores use motor proteins that "walk" chromosome along attached microtubule microtubule microtubule shortens by dismantling at kinetochore (chromosome attachement) end Kinetochore (a) Hypothesis

