Chapter 11.1, 11.2, 11.7
Regulation of Cell Division

Getting from there to here...

- Cell division
 - continuity of life = reproduction of cells
 - reproduction
 - unicellular life
 - growth and repair
 - multicellular life
- Cell cycle
 - life of a cell from origin to division into 2 new daughter cells

Getting the right stuff

- What is passed to daughter cells?
 - exact copy of genetic material = DNA
 - this division step = mitosis
 - assortment of organelles & cytoplasm
 - this division step = cytokinesis

Copying DNA

- Dividing cell duplicates DNA
 - separates each copy to opposite ends of cell
 - splits into 2 daughter cells
 - each human cell duplicates ~2 meters DNA
 - separates 2 copies so each daughter cell has complete identical copy
 - error rate = ~1 per 100 million bases
 - 3 billion base pairs
 - mammalian genome
 - ~30 errors per cell cycle
 - mutations

Cell Cycle

- Cell has a “life cycle”
 - cell is formed from a mitotic division
 - cell grows & matures to divide again
 - cell grows & matures to never divide again

- Phases of a dividing cell’s life
 - interphase
 - cell grows
 - replicates chromosomes
 - produces new organelles & biomolecules
 - mitotic phase
 - cell separates & divides chromosomes
 - mitosis
 - cell divides cytoplasm & organelles
 - cytokinesis
Interphase
- 90+% of cell life cycle
 - cell doing its “everyday job”
 - produce RNA, synthesize proteins
 - prepares for duplication if triggered
- Characteristics
 - nucleus well-defined
 - DNA loosely packed in long chromatin fibers

Interphase
- Divided into 3 phases:
 - G1 = 1st Gap
 - cell doing its “everyday job”
 - cell grows
 - S = DNA Synthesis
 - copies chromosomes
 - G2 = 2nd Gap
 - prepares for division
 - cell grows
 - produces organelles, proteins, membranes

G0 phase
- G0 phase
 - non-dividing, differentiated state
 - most human cells in G0 phase
 - nerve & muscle cells
 - highly specialized; arrested in G0 and can never divide!
 - liver cells
 - in G0, but can be “called back” to cell cycle by external cues

Interphase G2
- Nucleus well-defined
 - chromosome duplication complete
 - DNA loosely packed (more or less) in long chromatin fibers
- Prepares for mitosis
 - produces proteins & organelles

Coordination of Cell Cycle
- Multicellular organism
 - need to coordinate across different parts of organism
 - timing of cell division
 - rates of cell division
 - crucial for normal growth, development & maintenance
 - do all cells have same cell cycle?
Frequency of Cell Cycle
- Frequency of cell division varies with cell type
 - skin cells: divide frequently throughout life
 - liver cells: retain ability to divide, but keep it in reserve
 - mature nerve cells & muscle cells: do not divide at all after maturity

Cell Cycle Control
- Cell cycle can be put on hold at specific checkpoints
- Irreversible points in cell cycle
 - replication of genetic material
 - separation of sister chromatids

“Go-ahead” signals
- Signals that promote cell growth & division
 - intracellular signals: “promoting factors”
 - extracellular signals: “growth factors”
- Primary mechanism of control
 - phosphorylation
 - kinase enzymes

Checkpoint control system
- Checkpoints
 - cell cycle controlled by STOP & GO chemical signals at critical points
 - signals indicate if key cellular processes have been completed correctly

G₁ checkpoint
- G₁ checkpoint is critical
 - primary decision point
 - “restriction point”
 - if cell receives “go” signal, it continues on...
 - if does not receive “go” signal, cell exits cycle & switches to G₀ phase
 - non-dividing state
Intracellular signals

- **Promoting factors**
 - Cyclins
 - regulatory proteins
 - levels cycle in the cell
 - Cdns
 - cyclin-dependent kinases
 - enzyme activates cellular proteins

- **MPF (for G2 checkpoint):**
 - maturation/mitosis promoting factor
- **APC (for M checkpoint):**
 - anaphase promoting complex

Cyclins & Cdns

- Interaction of Cdns & different Cyclins triggers the stages of the cell cycle.

Extracellular Signals

- **Growth factors**
 - external signals
 - protein signals released by body cells that stimulate other cells to divide
 - density-dependent inhibition
 - crowded cells stop dividing
 - mass of cells use up growth factors
 - not enough left to trigger cell division

Example of a Growth Factor

- **Platelet Derived Growth Factor (PDGF)**
 - made by platelets (blood cells)
 - binding of PDGF to cell receptors stimulates fibroblast cell division
 - **Growth of fibroblast cells (connective tissue cells) helps heal wounds!**
Cancer & Cell Growth

- Cancer is essentially a failure of cell division control
 - unrestrained, uncontrolled cell growth
- What control is lost?
 - checkpoint stops
 - gene **p53** plays a key role in **G₁** checkpoint
 - p53 protein halts cell division if it detects damaged DNA
 - stimulates repair enzymes to fix DNA
 - forces and keeps cell in **G₂** resting stage
 - causes apoptosis of severely damaged cell
 - **MOST** cancers have to shut down p53 activity

Growth Factors, Genes, and Cancer

- Cancer is a “genetic” disease...
 - **proto-oncogenes**
 - normal genes that become oncogenes (cancer-causing) when mutated
 - stimulates cell growth
 - if switched on or **increased expression** can cause cancer
 - example: RAS (activates cyclin production)
 - **tumor-suppressor genes**
 - inhibits cell division
 - if switched off can cause cancer
 - example: p53

p53 — Master Regulator Gene

- normal p53
 - DNA repair enzyme
 - p53 allows cells with repaired DNA to divide.
- **abnormal** p53
 - DNA damage is caused by heat, radiation, or chemicals.
 - p53 fails to stop cell division and repair DNA.
 - Cell divides without repair to damaged DNA.
 - Damaged cells continue to divide. If other damage accumulates, the cell can turn cancerous.
Development of Cancer

- Cancer develops only after a cell line experiences ~6 key mutations ("hits")
 - unlimited growth
 - turn on oncogenes
 - ignore checkpoints
 - turn off tumor suppressor genes
 - escape apoptosis
 - turn off programmed cell death genes
 - immortality = unlimited divisions
 - turn on chromosome maintenance genes
 - promotes blood vessel growth
 - turn on blood vessel growth genes
 - overcome anchor & density dependence
 - turn off "touch sensor" gene

What causes these "hits"?
- Mutations in cells can be triggered by:
 - UV radiation
 - chemical exposure
 - radiation exposure
 - heat
 - cigarette smoke
 - pollution
 - age
 - genetics

Tumors
- Mass of abnormal cells
 - Benign tumor (not totally safe...)
 - abnormal cells remain at original site as a lump
 - p53 has halted cell divisions
 - still have properties of ‘original’ tissue
 - most do not cause serious problems & can be removed by surgery
 - Malignant tumors
 - cells leave original site
 - lose attachment to nearby cells
 - carried by blood & lymph system to other tissues
 - start more tumors = metastasis
 - no longer resembles ‘original’ tissue
 - impair functions of organs throughout body

Traditional treatments for cancers
- Treatments target rapidly dividing cells
 - high-energy radiation & chemotherapy with toxic drugs
 - kill rapidly dividing cells at expense of healthy cells

New “miracle drugs”
- Drugs targeting proteins (enzymes) found only in SPECIFIC tumor cells
 - Gleevec
 - treatment for adult leukemia (CML)
 - stomach cancer (GIST)
 - 1st successful targeted drug