Nucleic Acids

- **MAIN Function:**
 - store & transmit hereditary information

- **Examples:**
 - RNA (ribonucleic acid)
 - DNA (deoxyribonucleic acid)

- **Structure:**
 - monomers = nucleotides

Nucleotides

- 3 parts
 - nitrogen base (C-N ring)
 - pentose sugar (5C)
 - ribose in RNA
 - deoxyribose in DNA
 - PO₄ group

Types of Nucleotides

- 2 types of nucleotides
 - based on different nitrogenous bases
- purines
 - double ring N base
 - adenine (A)
 - guanine (G)
- pyrimidines
 - single ring N base
 - cytosine (C)
 - thymine (T)
 - uracil (U)

Building the Polymer

- Backbone
 - sugar to PO₄ bond
 - phosphodiester bond
 - a COVALENT bond
 - new base added to sugar of previous base
 - polymer grows in one direction
 - N bases hang off the sugar-phosphate backbone
Nucleic Acid Types
- RNA
 - single nucleotide chain
- DNA
 - double nucleotide chain
 - N bases bond in pairs across chains
 - spiraled in a double helix
 - double helix 1st proposed as structure of DNA in 1953 by James Watson & Francis Crick

Pairing of Nucleotides
- Nucleotides bond between DNA strands
 - H bonds
 - purine :: pyrimidine
 - $A :: T$
 - 2 H bonds
 - $G :: C$
 - 3 H bonds

Interesting note…
- Ratio of $A-T::G-C$ affects stability of DNA molecule
 - 2 H bonds vs. 3 H bonds
 - biotech procedures
 - more G-C bonds need higher T° to separate strands
 - high T° organisms
 - many G-C

Another interesting note…
- ATP: Adenosine Triphosphate
 - modified nucleotide
 - adenine ribose + P$_i$ + P$_i$ + P$_i$

Information Polymer
- Function
 - series of bases encodes information
 - like the letters of a book
 - stored information is passed from parent to offspring
 - need to copy accurately
 - stored information = genes
 - genetic information

DNA Molecule
- Double helix
 - H bonds between bases join the 2 strands
 - $A :: T$
 - $C :: G$

Again – understand the significance of the hydrogen bonds between strands!
Copying DNA

- Replication
 - 2 strands of DNA helix are complementary
 - have one, can build other
 - have one, can rebuild the whole
 - why is this a good system?
 - when in the life of a cell does replication occur?
 - mitosis
 - meiosis

DNA Replication

"It has not escaped our notice that the specific pairing we have postulated immediately suggests a possible copying mechanism for the genetic material."

- 1953
 - James Watson
 - Francis Crick

What is Life?

- First we have to define LIFE...
 - organized as cells
 - respond to stimuli
 - regulate internal processes
 - homeostasis
 - metabolism
 - use energy to grow
 - develop
 - change & mature within lifetime
 - reproduce
 - heredity
 - DNA / RNA
 - adaptation & evolution

The Origin of Life is Theory!

- Special Creation
 - Was life created by a supernatural or divine force?
 - not testable
- Extraterrestrial Origin
 - Was the original source of organic (carbon) materials comets & meteorites striking early Earth?
 - testable
- Spontaneous Abiotic Origin
 - Did life evolve spontaneously from inorganic molecules?
 - testable

Conditions on early Earth

- Reducing atmosphere
 - water vapor (H₂O), CO₂, N₂, NOx, H₂, NH₃, CH₄, H₂S
 - lots of available H & its electron
- Energy source
 - lightning, UV radiation, volcanic

Origin of Organic Molecules

- 1920
 - Oparin & Haldane propose reducing atmosphere hypothesis
- 1953
 - Miller & Urey test hypothesis
 - formed organic compounds
 - amino acids
 - adenine
Origin of Cells (protobionts)
- Bubbles \(\rightarrow\) separate inside from outside \(\rightarrow\) metabolism & reproduction

Origin of Genetics
- RNA is likely first genetic material
 - multi-functional
 - codes information
 - self-replicating molecule THAT CAN MUTATE
 - makes inheritance possible
 - natural selection & evolution
 - enzyme functions
 - ribozymes
 - replication
 - regulatory molecule
 - transport molecule
 - tRNA

Carbohydrates
- Structure / monomer
 - monosaccharide
- Function
 - energy
 - raw materials
 - energy storage
 - structural compounds
- Examples
 - glucose, starch, cellulose, glycogen

Lipids
- Structure / building block
 - glycerol, fatty acid, cholesterol, H-C chains
- Function
 - energy storage
 - membranes
 - hormones
- Examples
 - triglycerides, phospholipids, steroids

Proteins
- Structure / monomer
 - amino acids
 - levels of structure
- Function
 - enzymes
 - defense
 - transport
 - structure
 - signals
 - receptors
- Examples
 - digestive enzymes, membrane channels, insulin hormone, actin

Nucleic acids
- Structure / monomer
 - nucleotide
- Function
 - information storage & transfer
- Examples
 - DNA, RNA