Chapter 3.1
The Chemistry of Carbon

Why study Carbon?
- All living things are made of cells
- Cells
 - ~72% H₂O
 - ~3% salts (Na, Cl, K…)
 - ~25% carbon compounds
 - carbohydrates
 - lipids
 - proteins
 - nucleic acids

Chemistry of Life
- Organic chemistry is the study of carbon compounds
- C atoms are versatile building blocks
 - bonding properties
 - 4 stable covalent bonds

Complex molecules assembled like TinkerToys

Hydrocarbons
- Simplest C molecules = hydrocarbons
 - combinations of C & H
- Simplest HC molecule = methane
 - 1 carbon bound to 4 H atoms
 - non-polar
 - not soluble in H₂O
 - hydrophobic
 - stable
 - very little attraction between molecules
 - a gas at room temperature

Hydrocarbons can grow...
- adding C-C bonds
 - straight line
 - ethane
 - hexane
 - branching
 - isohexane
 - ring
 - cyclohexane
Diversity of Organic Molecules

Isomers
- Molecules with same molecular formula but different structures
 - different chemical properties

Structural Isomers
- Molecules differ in structural arrangement of atoms

Geometric Isomers
- Molecules differ in arrangement around C=C double bond
 - same covalent partnerships

Enantiomer (stereo) Isomers
- Molecules which are mirror images of each other
 - C bonded to 4 different atoms or groups
 - asymmetric
 - left-handed & right-handed versions
 - "L" versions are biologically active

Form Affects Function!
- Structural differences create important functional significance
 - amino acid alanine
 - L-alanine used in proteins
 - but not D-alanine
 - medicines
 - L-version active
 - but not D-version
 - sometimes with tragic results…
Form Affects Function!
- Thalidomide
 - prescribed to pregnant women in 50’s & 60’s
 - a sedative; reduced morning sickness, but...
 - stereoisomer caused severe birth defects

Diversity of Molecules
- Substitute other atoms or groups around the C
 - ethane vs. ethanol
 - H replaced by an hydroxyl group (–OH)
 - nonpolar vs. polar
 - gas vs. liquid
 - biological effects!

Functional Groups
- Components of organic molecules that are involved in chemical reactions
 - give organic molecules distinctive properties
 - ex: male & female hormones...

Viva la difference!
- Basic structure of male & female hormones is identical
 - identical C skeleton
 - attachment of different functional groups
 - interact with different targets in the body

Types of functional groups
- 6 functional groups most important to chemistry of life:
 - hydroxyl
 - amino
 - carbonyl
 - sulphydryl
 - carboxyl
 - phosphate

Affect reactivity
- hydrophilic
- increase solubility in water

Hydroxyl
- –OH
 - organic compounds with OH = alcohols
 - names typically end in -ol
 - ethanol

<table>
<thead>
<tr>
<th>Table 4.1 Functional Groups of Organic Compounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functional Group</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>Hydroxyl</td>
</tr>
</tbody>
</table>
Carbonyl
- C=O
 - O double bonded to C
 - if C=O at end molecule = aldehyde
 - if C=O in middle of molecule = ketone

Table 4.1 Functional Groups of Organic Compounds
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Formula</th>
<th>Name of Compounds</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonyl</td>
<td></td>
<td>Aldehyde</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ketone</td>
<td></td>
</tr>
</tbody>
</table>

Carboxyl
- –COOH
 - C double bonded to O & single bonded to OH group
 - compounds with COOH = acids
 - fatty acids
 - amino acids

Table 4.1 Functional Groups of Organic Compounds
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Formula</th>
<th>Name of Compounds</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carboxyl</td>
<td></td>
<td>Carboxylic acid</td>
<td></td>
</tr>
</tbody>
</table>

Amino
- –NH₂
 - N attached to 2 H
 - compounds with NH₂ = amines
 - amnio acids
 - NH₂ acts as base
 - ammonia picks up H⁺ from solution

Table 4.1 Functional Groups of Organic Compounds
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Formula</th>
<th>Name of Compounds</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amino</td>
<td></td>
<td>Amino acid</td>
<td></td>
</tr>
</tbody>
</table>

Sulphydryl
- –SH
 - S bonded to H
 - compounds with SH = thiols
 - SH groups stabilize the structure of proteins

Table 4.1 Functional Groups of Organic Compounds
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Formula</th>
<th>Name of Compounds</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphydryl</td>
<td></td>
<td>Thiol</td>
<td></td>
</tr>
</tbody>
</table>

Phosphate
- –PO₄³⁻
 - P bound to 4 O
 - connects to C through an O
 - PO₄ are anions with 2 negative charges
 - one function of PO₄ is to transfer energy between organic molecules (ATP)

Table 4.1 Functional Groups of Organic Compounds
<table>
<thead>
<tr>
<th>Functional Group</th>
<th>Formula</th>
<th>Name of Compounds</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td></td>
<td>Organic phosphate</td>
<td></td>
</tr>
</tbody>
</table>

Why study Functional Groups?
- These help to make the building blocks for biological molecules

...and that comes next!
Macromolecules
- Smaller organic molecules join together to form larger molecules
 - macromolecules
- 4 major classes of macromolecules:
 - carbohydrates
 - lipids
 - proteins
 - nucleic acids

Polymers
- Long molecules built by linking chain of repeating smaller units
 - polymers
 - monomers = repeated small units
 - covalent bonds

How to build a polymer
- Condensation reaction
 - dehydration synthesis
 - joins monomers by “taking” H$_2$O out
 - 1 monomer provides OH
 - the other monomer provides H
 - together these form H$_2$O
 - requires energy & enzymes

How to break down a polymer
- Hydrolysis
 - use H$_2$O to break apart monomers
 - reverse of condensation reaction
 - H$_2$O is split into H and OH
 - H & OH group attach where the covalent bond used to be
 - ex: digestion is hydrolysis