Chapter 2.4
Water—The Elixir of Life!

Why are we studying water?
- All life occurs in water
 - inside & outside the cell

Chemistry of water
- Water is a polar molecule
 - + & – poles
 - remember polar covalent bonds

Chemistry of water
- H₂O molecules form H bonds with each other
 - + attracted to –
 - creates a sticky molecule

Cohesion
- H bonding between H₂O creates cohesion
 - water is “sticky”
 - surface tension
 - drinking straw
 - can you suck sugar up a straw?

How does H₂O get to top of tree?
- Transpiration
Adhesion
- H₂O molecules form H bonds with other substances
 - capillary action
 - meniscus
 - water climbs up fiber
 - ex. paper towel

Water is the solvent of life
- H₂O is a good solvent due to its polarity
 - polar H₂O molecules surround + & – ions
 - solvents dissolve solutes creating aqueous solutions

Hydrophilic
- Hydrophilic
 - substances have affinity for H₂O
 - polar or non-polar?
 - ionic

Hydrophobic
- Hydrophobic
 - substances do not have affinity for H₂O
 - polar or non-polar?
 - non-ionic

The special case of ice
- Most (all?) substances are more dense when they are solid
- But not water…
- Ice floats!
 - H bonds form a crystal with loose structure

Why is “ice floats” important?
- Oceans & lakes don’t freeze solid
 - if ice sank…
 - eventually all ponds, lakes & even ocean would freeze solid
 - during summer, only upper few inches would thaw
 - surface ice insulates water below
 - allowing life to survive the winter
 - seasonal turnover of lakes
 - cycling nutrients
Specific heat
- \(\text{H}_2\text{O}\) has high specific heat
 - due to H bonding
- \(\text{H}_2\text{O}\) resists changes in temperature
 - takes a lot to heat it up
 - takes a lot to cool it down
- \(\text{H}_2\text{O}\) moderates temperatures on Earth

Evaporative cooling
- Organisms rely on heat of vaporization to remove heat

Water forms ions
- Hydrogen ion (\(\text{H}^+\)) splits off from water to leave a hydroxide ion (\(\text{OH}^-\))
 \[\text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}^-\]
- If concentration of 2 ions is equal, water is neutral
- If [\(\text{H}^+\)] > [\(\text{OH}^-\)], water is acidic
- If [\(\text{OH}^-\)] > [\(\text{H}^+\)], water is basic
- pH scale = how acidic or basic a solution is

pH Scale
- In neutral solution \([\text{H}^+] = 10^{-7}\) \(\rightarrow\) \(\text{pH} = 7\)
- Values for pH decline as [\(\text{H}^+\)] increase
- Acids
 - adding acid increases [\(\text{H}^+\)]
- Bases
 - adding base increases [\(\text{OH}^-\)]

pH & Biology
- pH of a neutral solution = 7
- Acidic solutions = pH < 7
- Basic solutions = pH > 7
- Most biological fluids have pH 6 – 8
 - pH values in human stomach can reach 2
- Each pH unit represents a 10-fold difference in [\(\text{H}^+\)] & [\(\text{OH}^-\)] concentrations.
 - Small change in pH actually indicates a substantial change in [\(\text{H}^+\)] & [\(\text{OH}^-\)]

Importance of Water
- Water is a polar molecule
- The special properties of water make life on Earth possible
- The chemical behavior of water governs how organisms function