Chapter 2
Chemistry

Why are we studying chemistry?
- Biology has chemistry at its foundation

The Basics
- Everything is made of matter
- Matter is made of atoms
- Atoms are made of:
 - protons + mass of 1 nucleus
 - neutrons 0 mass of 1 nucleus
 - electrons - mass << 1 orbits
- Different kinds of atoms = elements

Models of atoms

Atomic structure determines behavior
- The number of protons in an atom determines the element
 - # of protons = atomic number
 - this also tells you # of electrons
- All atoms of an element have same chemical properties
 - all behave the same
 - properties don’t change

Life requires ~25 chemical elements
- About 25 elements are essential for life
 - Four elements make up 96% of living matter:
 - carbon (C)
 - hydrogen (H)
 - oxygen (O)
 - nitrogen (N)
 - Four elements make up most of remaining 4%:
 - phosphorus (P)
 - calcium (Ca)
 - sulfur (S)
 - potassium (K)
Isotopes
- Different number of neutrons (heavier)
- Some are unstable
 - nuclear reactions / decay
- Split off neutrons &/or protons
 - radioactivity
- Biological tool
- Biological hazard

Bonding properties
- Effect of electrons
 - chemical behavior of an atom depends on its electron arrangement
 - depends on the number of electrons in its outermost shell, the valence shell

Elements & their valence shells
- Elements in the same row have the same number of shells
- Elements in the same column have the same valence & similar chemical properties
Elements & their valence shells

- Moving from left to right, each element has a sequential addition of electrons (and protons)

Chemical reactivity

- Atoms tend to
 - Complete a partially filled outer (valence) electron shell
 - Empty a partially filled outer (valence) electron shell

This tendency drives chemical reactions!

Ionic bonds

- Transfer of an electron
- Forms + & - ions
 - + = cation
 - - = anion
- Weak ‘bond’
 - example: salt = dissolves easily in water

Covalent bonds

- Two atoms need an electron
- Share a pair of electrons
- Strong bond
 - both atoms holding onto the electrons
- Forms molecules

 - (a) Hydrogen

 - example: water = takes energy to separate

Double covalent bonds

- Two atoms can share more than one pair of electrons
 - double bonds (2 pairs of electrons)
 - triple bonds (3 pairs of electrons)
- Very strong bonds

 - (b) Oxygen
Multiple covalent bonds
- 1 atom can form covalent bonds with two or more other atoms
 - forms larger molecules
 - ex. carbon

Polar covalent bonds
- Pair of electrons not shared equally by 2 atoms
- Water = O + H
 - oxygen has stronger “attraction” for the shared electrons than hydrogen
 - oxygen has higher electronegativity

Polar covalent bonds
- 2 hydrogens in the water molecule form an angle
- Water molecule is polar
 - oxygen end is –
 - hydrogen end is +
- Leads to many interesting properties of water....

Hydrogen bonds
- Positive H atom in 1 water molecule is attracted to negative O in another
- Can occur wherever an -OH exists in a larger molecule
- Weak “bonds”

Van der Waals forces
- Interactions between nonpolar substances
- Due to random variations in the electron distribution of a molecule
- Very weak forces

Reductionist view of biology
- Matter is made of atoms
- Life requires ~25 chemical elements
- Atomic structure determines behavior of an element
- Atoms combine by chemical bonding to form molecules
- Weak chemical bonds play important roles in chemistry of life
- A molecule’s biological function is related to its shape
- Chemical reactions make & break chemical bonds