Chapter 10.1 – 10.2
Photosynthesis:
Life from Light

Energy needs of life
- All life needs a constant input of energy
 - Heterotrophs
 - get their energy from eating others: “other feeders”
 - consumers of other organisms
 - consume organic molecules
 - Autotrophs
 - get their energy from “self”
 - get their energy from sunlight
 - use light energy to synthesize organic molecules

How are they connected?

Heterotrophs
making energy & organic molecules from ingesting organic molecules

\[
\text{glucose + oxygen} \rightarrow \text{carbon + water + energy} \rightarrow \text{dioxide}
\]
\[
\text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2 \rightarrow 6\text{CO}_2 + 6\text{H}_2\text{O} + \text{ATP}
\]

Autotrophs
making energy & organic molecules from light energy

\[
\text{carbon dioxide} + \text{water + energy} \rightarrow \text{glucose + oxygen}
\]
\[
6\text{CO}_2 + 6\text{H}_2\text{O} + \text{light energy} \rightarrow \text{C}_6\text{H}_{12}\text{O}_6 + 6\text{O}_2
\]

What does it mean to be a plant?
- Need to...
 - collect light energy
 - transform it into chemical energy
 - store light energy
 - in a stable form to be moved around the plant
 - also saved for a rainy day
 - need to get building block atoms from the environment
 - C, H, O, N, P, S
 - produce all organic molecules needed for growth
 - carbohydrates, proteins, lipids, nucleic acids

How are they connected?
Plant Structure
- Obtaining raw materials
 - sunlight
 - leaves = solar collectors
 - CO_2
 - stomates = gas exchange
 - H_2O
 - uptake from roots
 - ‘nutrients’
 - uptake from roots

Photosynthesis Overview
- "Light" reactions (Light-Dependent Rxns)
 - convert solar energy to chemical energy
 - sun \rightarrow ATP
- Calvin cycle
 - uses chemical energy (NADPH ATP) to reduce CO_2 to build $\text{C}_6\text{H}_12\text{O}_6$ (sugars)

A Look at Light
- The spectrum of color
 - Shorter wavelength \rightarrow Longer wavelength
 - Higher energy \rightarrow Lower energy

Light: Absorption Spectra
- Photosynthesis performs work only with absorbed wavelengths of light
 - chlorophyll a — the dominant pigment — absorbs best in red & blue wavelengths & least in green
 - other pigments with different structures have different absorption spectra

Chloroplasts
- Chloroplasts are green because they absorb light wavelengths in red & blue and reflect green back out
 - structure \leftrightarrow function
Chloroplast Structure

- Chloroplasts
 - double membrane
 - stroma
 - thylakoid sacs
 - grana stacks
- Chlorophyll & ETC in thylakoid membrane
 - H⁺ gradient built up within thylakoid sac

Pigments of Photosynthesis

- chlorophyll & accessory pigments
 - “photosystem”
 - embedded in thylakoid membrane
 - structure → function

Photosystems

- Collections of chlorophyll molecules
- 2 photosystems in thylakoid membrane
 - act as light-gathering “antenna complex”
 - Photosystem II
 - chlorophyll a
 - P₆₈₀ = absorbs 680nm wavelength red light
 - Photosystem I
 - chlorophyll b
 - P₇₀₀ = absorbs 700nm wavelength red light

Light Reactions

- Similar to ETC in cellular respiration
 - membrane-bound proteins in organelle
 - electron acceptor
 - NADPH
 - proton (H⁺) gradient across inner membrane
 - ATP synthase enzyme

The ATP that Jack built

- moves the electrons
- runs the pump
- pumps the protons
- forms the gradient
- releases the free energy
- allows the Pᵢ to attach to ADP
- forms the ATP

ETC of Respiration

- Mitochondria transfer chemical energy from food molecules into chemical energy of ATP
 - use electron carrier NADH

... that evolution built
Chloroplasts transform light energy into chemical energy of ATP
- use electron carrier NADPH

ETC of Photosynthesis

- **ETC produces from light energy:**
 - ATP & NADPH
 - NADPH (stored energy) goes to Calvin cycle
- **PS II absorbs light**
 - excited electron passes from chlorophyll to “primary electron acceptor”
 - need to replace electron in chlorophyll
 - enzyme extracts electrons from H₂O & supplies them to chlorophyll
 - splits H₂O
 - O combines with another O to form O₂
 - O₂ released to atmosphere
 - and we breathe easier!

Experimental Evidence

- **Where did the O₂ come from?**
 - radioactive tracer = O₁₈

- **Experiment 1**
 - 6CO₂ + 6H₂O + light energy → C₆H₁₂O₆ + 6O₂

- **Experiment 2**
 - 6CO₂ + 6H₂O + light energy → C₆H₁₂O₆ + 6O₂

Proved O₂ came from H₂O not CO₂ = plants split H₂O

2 Photosystems

- Light reactions elevate electrons in 2 steps (PS II & PS I)
 - **PS II** generates energy as ATP
 - **PS I** generates reducing power as NADPH

Cyclic Photophosphorylation

- If PS I can’t pass electron to NADP, it cycles back to PS II & makes more ATP, but no NADPH
 - coordinates light reactions to Calvin cycle
 - Calvin cycle uses more ATP than NADPH
Photophosphorylation

cyclic photophosphorylation

noncyclic photophosphorylation

Photosynthesis summary

Where did the energy come from?
Where did the H_2O come from?
Where did the electrons come from?
Where did the O_2 come from?
Where did the H^+ come from?
Where did the ATP come from?
Where did the O_2 go?
What will the ATP be used for?
What will the NADPH be used for?

...stay tuned for the Calvin cycle