Chapter 8.1 – 8.2

Energy and ATP!

Energy needs of life
- Organisms are **endergonic** systems
 - What do we need energy for?
 - synthesis (biomolecules)
 - reproduction
 - active transport
 - movement
 - temperature regulation

Flow of energy through life
- Life is built on chemical reactions

Chemical reactions of life
- Metabolism
 - **forming bonds** between molecules
 - dehydration synthesis
 - anabolic reactions
 - **breaking bonds** between molecules
 - hydrolysis
 - catabolic reactions

Examples
- **dehydration synthesis**
 - ![dehydration synthesis example](image)
- **hydrolysis**
 - ![hydrolysis example](image)
Chemical reactions & energy

- Some chemical reactions release energy
 - exergonic
 - digesting polymers
 - hydrolysis = catabolism

- Some chemical reactions require input of energy
 - endergonic
 - building polymers
 - dehydration synthesis = anabolism

Endergonic vs. Exergonic reactions

- **Exergonic**
 - Energy released
 - Reactant → Product
 - \(\Delta G \) = change in free energy = ability to do work

- **Endergonic**
 - Energy invested
 - Reactant → Product
 - Energy must be supplied.

Energy & life

- Organisms require energy to live
 - where does that energy come from?
 - often via coupling exergonic reactions (releasing energy) with endergonic reactions (needing energy)

Living economy

- **Fueling the economy**
 - eat high energy organic molecules (food)
 - break them down = catabolism (digest)
 - capture energy in form cell can use

- Need an **energy currency**
 - a way to pass energy around

ATP

- **Adenosine Triphosphate**
 - modified nucleotide
 - adenine + ribose + P\(_i\) → AMP
 - AMP + P\(_i\) → ADP
 - ADP + P\(_i\) → ATP

Why does ATP store energy?

- Each P\(_i\) group more difficult to add
 - a lot of stored energy in each bond
 - most stored in 3rd P\(_i\)
 - \(\Delta G = -7.3 \) kcal/mole

- Close packing of negative P\(_i\) groups
 - spring-loaded

The instability of its P bonds makes ATP an excellent energy donor
How does ATP transfer energy?

- **Phosphorylation**
 - when ATP does work, it transfers its 3rd \(P_i \) to other molecules
 - \(\text{ATP} \rightarrow \text{ADP} \)
 - releases energy
 - \(\Delta G = -7.3 \text{ kcal/mol (-30kJ/mol)} \)
 - it destabilizes the other molecule

An example of Phosphorylation...

- **Building polymers from monomers**
 - need ATP for energy & to take the water out

Another example of Phosphorylation...

- **The first steps of cellular respiration**
 - beginning the breakdown of glucose \(\rightarrow \) ATP

ATP / ADP cycle

- Can’t store ATP for long periods
 - too reactive
 - transfers \(P_i \) too easily
 - only short term energy storage
 - carbs & fats are long term energy storage

Where is ATP needed? One example...

- Cleaving \(\text{ATP} \rightarrow \text{ADP} \) allows myosin head to bind to actin filament.

Cellular respiration chemical energy harvested from food molecules

A working muscle recycles over 10 million ATPs per second